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Squares of S-functions of special shapes 
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Abstract. Three speeific problems are intrcduced and solved. The first is ta detennine the 
number of times the adjoint representalion of S l h  occurs in the Kronecker square of a self- 
contragredient representation. The second is to determine the number of times the adjoint appears 
in the symmetric part of the square, with the third being the number of times the adjoint appears 
in the antisymmetric part. These problems are solved by recasting them as three problems 
concerning the squares of selfsamplementary S-functions and an equivalent adjoint S-function 
of a particular shape. 

1. Introduction 

Problems in physics and mathematics can often be expressed in terms of ordered partitions of 
integers associated with special shapes and special types of Schur functions (S-functions). In 
this paper we study a problem that arose in the study of properties of the real representations 
of the groups Sun. The entire problem may be recast as a particular problem in the theory 
of S-functions. We shall first introduce some definitions and then give a precise statement of 
the S-function problem followed by its solution. Finally, we relate the results to irreducible 
representations (irreps) of the special unitary groups SU,. Throughout .this paper we follow 
the notation described in the book by Macdonald (Macdonald 1979). 

2. Some definitions 

Let h = (AI ,  A?, ..., he) be an ordered partition such that (AI > hz 2 .. . 2 At > 0), 
possibly with trailing zeros to make the total number of parts of A equal to a positive 
integer n. Such a partition may be inscribed in a box B = (AY) having hl columns and n 
rows as illustrated for the particular case of the partition (4210). 
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The cells in the lower portion of B not occupied by those of A describe the shape of a 
partition AC (after rotation by a) which we shall term the complement of A where 
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A' = (AI -A,,?., - L - 1 , .  . . ,O) (1) 

A partition Asc will be said to self-complementary if A = A'. In that case the box B involves 
two equal parts (to within a rotation by a) as shown below for the partition (6510). 

We may associate with any self-complementary partition hSc an adjoint equivalent 
partition A" such that 

A" = (AI + 1, A;-*, AI  - 1) (2) 

of length &,Iae) = n and weight lA"l = 21A"l. Thus A" = (6510) is associated with the 
adjoint equivalent partition hac = (7665). 

The shape of A" for a given As' is obtained by the simple procedure 
(i) draw the A1 x n box B ;  
(ii) add one cell to the first row of B; and 
(iii) delete the south-eastern corner cell of B. 
The shape for hac = (7665) is illustrated'below. 

3. Statement of the problem 

Let the S-function indexed by the partition A be denoted by [A]. Denote the coefficient 
of [A] in the expansion of a symmetric function F by (F, [A]). The three problems to be 
considered involve the evaluation of the following non-negative integers 
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4. Some propositions 

The explicit evaluation of (I) can be made as follows. 
It is known that ([A.). {PI,  I Y D  = ({AI, IyJ/bL)). 
To find the coefficient. we: ~~ ~ ~~~~~ ~~~~ ~ 

(a) draw the shape A" /ASC; 
(b) fill the shape with A:' copies of i for 1 6 i < %Isc), such that the numbers must be 

weakly increasing from left to right for any row and strictly increasing from top to bottom 
for any column; and 

(c) further, if the letters are read from right to left, row by row, then the word must be 
a lattice permutation. 

Thus for Asc = (11 8865330) we obtain the five numberings below to give 

({ll 88653301, (11 8865330},(12 116 10)) =5. 
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Examples such as the above suggested the following proposition: 

Proposition I .  
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((Asc]. (Asc), [A."]) = d(A") (3) 

where d(Asc) is the number of distinct non-zero parts of the partition As=. 
The above proposition comes from first noting that 

IA/ll .  111 2 d(A)lAl 

(with'all other terms having multiplicities < 1.) and then that the shape of [Aae/Asc] 
decomposes into two disjoint shapes, one containing just a single cell and the other a skew 
frame that has the same S-function content as [Asc/l]  leading to 

(A"/Asc] [A"/l]~. (1) 

and thence to the desired result of equation (3). 

terms by use of the power sum plethysms 
The square of an S-function (A] may be resolved into its symmetric and antisymmetric 

If (pz  o (ASC], (A*]) = 0 then 

((7.1 0 {ASC), @."'I) = (I1'10 @SC1. {A"]) = ;({AIz, [A"]). (6) 

We may be assured that (pzo[A"],  (A"]) = 0 if A" has a non-null two-core &ittlewood 
1951). 

Pmposirion 2. 
has a null two-core. 

Proof. The two-core of A* is determined by the following steps. 

If n is odd then ABS has a non-null two-core whereas if? is even then A" 

(i) Make l = l(A") even (adding a zero if needed). 
(ii) Form the augmented partition, i", by adding the staircase At = (t - I , l  - 

(iii) Count the number of even and odd pans of i*. If the numbers are equal then Am 
has a null two-core otherwise thetwo-core is non-null. 

When n is odd we find that A* has more even than odd parts and hence the two-core 
cannot be null, conversely for n even the number of odd and even parts is always equal and 
hence the two-core is always null. 0 

In the case when (A*] has null two-core, the coefficient (no [ASC], (Aac]) is determined 
by the two-content of {A") (Littlewood 1951). Let CI. c~ be the two-content of Aae and E 

be the two-sign of A". Then (A"] appears in p~ o (A."'] with coefficient k and sign E if 

2, . . . ,3 ,2 ,  I ,  0)  to ~ a e ,  i.e. XBe = iae + A 2 .  

( ~ ~ ~ l ~ ~ ~ z l ~ ~ ~ ~ ~ l )  = k .  (7) 

The two-content of A'' is determined by: 
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Proposition 3. Let A‘e = (AI + 1, A;-’, AI  - 1) with n even. If hl is even then the 
two-content of 1’ are 

while if A I  is odd then the two-content of Aae are 

Proof. ~ The two-content of Aae is obtained by reading the augmented partition 1.. from 
right to left and replacing the first even number by 0, the second by 2, . . . the k even 
number by n - 2. Similarly, the first odd number is replaced by 1, the second by 3 , .  . ., the 
last odd number by n - 1. Denote the resulting sequence by p”. Now, let 

where ,Iewn and ?.odd denote the partitions made from the even and odd parts of A, 
respectively. Then the two-contents of A= are 

(12) 

0 

I (p and 2 -6,%) qp -8” ) 
2 rum rue“ 

leading directly to the desired result. 

Proposition 4. 

E = +I.  

Proof: By definition the two-sign is equal to (-l)’”v(P’’) where p“ is as defined in 
proposition 3, and inv(n1, n2,. . . , nc) = E:=, inv(ni), and inv(ni) = card(nj : j > i 

U 

If A, is even then the two-sign of hac is E = -1. 
If A, is odd then the two-sign of A” is E = -1’if n = 0 mod 4 or if n = 2 mod 4 then 

and nj P n ~ ] .  This leads immediately to the proposition. 

Proposition 5. If n is even, Asc 3 [c, 1 and Asc 3 ( c ~ ] ,  then, 

( k l  ’ w, (h”C1) = 1. (13) 

Otherwise, the coefficient is zero. 

In such a case all the S-functions of length < n - 1 arising in (cl]. (CZ] are indexed by 
self-complementary partitions. The above proposition is known (Stanley 1971). 

5. Final results 

With the above propositions established it becomes a simple matter to solve Problems (n) 
and @I) leading immediately to the following. 
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(i) If n is odd then 

((2) 0 l ~ s c l ,  (A."')) = ((1') 0 IAsc), (Aac)) 
= qd(A"). 

(ii) If n is even and As' 3 CI and cz then 

d(ASC) - 1 
2 '  

((12) 0 (A"'), (A=]) = 

(14) 

(iv) Suppose n is even, 1'' 3 CI and As' 3 cz. If A1 is even, or AI is odd and n = 0 
mod 4, then 

d(ASC) - 1 
2 

d(hsc) + 1 
2 '  

(121 0 (ASCI, (A"]) = 

((1'1 o (ASC], (A"]) = 

We note that since the plethysm coefficients are integers, this proposition implies that when 
n is odd, or, when n is even but 1'' 3 CI and cz, then d(hsc) must be an even number. On 
the other hand, when n is even and A'' 3 CI and CZ, then d(ASc) must be an odd number. 
This result can also be verified directly by examining the shapes of 1''. CI and CZ. 

6. Self-contragredient and adjoint representations in SU, 

The above problem was motivated by an analogous problem concerning representations of 
the Lie groups of the generic type Sun. Let us recall a few well known properties of the 
irreducible representations of Sun. The inequivalent irreducible representations of SU,, may 
be labelled by ordered partitions of integers involving at most n - 1 non-zero parts. Those 
involving n parts are equivalent to imps involving < (n - 1) parts via 

{AI, Az, . . . , A n ]  E (AI  - A n ,  AZ -A,, . . . , 0) (20) 

i.e. one can remove any number columns of length n. The generators of the group SU, 
span the real adjoint representation (21"-z). 

The Kronecker product {A] x ( p )  is equivalent to the Littlewood-Richardson evaluation 
of the S-function product {A. p ]  with partitions involving more than n-parts are discarded 
and those with n-parts reduced to fewer than n-parts using (19). 

. . .}. If 

(21) 

An irrep of SV,, (A,, Az, . . .], has a contragredient partner (AI - A,, AI - 

{AI, 12,. . .) (Ai - A n ,  AI - An-i,. . .) 
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then the irrep [AI, A l . .  . .] is said to be self-contragredient (sc). The irreps of SU, are real 
only if they are self-conhagedient. All other irreps of SIJn are complex. " J s  the Kronecker 
 square of an irrep [A] of SO, will yield the adjoint irrep if and only if the irrep [A} is self- 
contr8gredient. Our problem was to determine the number of times the adjoint representation 
[21n-2] occurs in the Kronecker square of a given self-contragredient representation [Asc] 
of S u n  and to determine the number of times it occurs in the symmetric and antisymmetric 
parts'of the square. The relevant results follow directly from those found in the solution 
of the three S-function problems discussed earlier simply by noting the equivalence in (20) 
with, for given n 
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